skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fekete, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this video, we present theoretical and practical methods for achieving arbitrary reconfiguration of a set of objects, based on the use of external forces, such as a magnetic field or gravity: Upon actuation, each object is pushed in the same direction. This concept can be used for a wide range of applications in which particles do not have their own energy supply or in which they are subject to the same global control commands. A crucial challenge for achieving any desired target configuration is breaking global symmetry in a controlled fashion. Previous work (some of which was presented during SoCG 2015) made use of specifically placed barriers; however, introducing precisely located obstacles into the workspace is impractical for many scenarios. In this paper, we present a different, less intrusive method: making use of the interplay between static friction with a boundary and the external force to achieve arbitrary reconfiguration. Our key contributions are theoretical characterizations of the critical coefficient of friction that is sufficient for rearranging two particles in triangles, convex polygons, and regular polygons; a method for reconfiguring multiple particles in rectangular workspaces, and deriving practical algorithms for these rearrangements. Hardware experiments show the efficacy of these procedures, demonstrating the usefulness of this novel approach. 
    more » « less
  2. We present results arising from the problem of sweeping a mosquito-infested area with an Un-manned Aerial Vehicle (UAV) equipped with an electrified metal grid. This is related to the Traveling Salesman Problem, the Lawn Mower Problem and, most closely, Milling with TurnCost. Planning a good trajectory can be reduced to considering penalty and budget variants of covering a grid graph with minimum turn cost. On the theoretical side, we show the solution of a problem from The Open Problems Project that had been open for more than 15 years, and hint at approximation algorithms. On the practical side, we describe an exact method based on Integer Programming that is able to compute provably optimal instances with over 500 pixels. These solutions are actually used for practical trajectories, as demonstrated in the video. 
    more » « less